The Effects of Aging on the Pharmacokinetics of Nelfinavir and M8 in HIV-1-infected individuals

Nancy L. Sheehan1,2, Charles la Porte3,4,5, Kathryn Slayter4,6,7, Guijun Zhang3, Richard G Lalonde1, David Haase5,7, Rolf PG van Heeswijck4, Line Labba4
1McGill University Health Centre, University of Montreal, Montréal, 2The Ottawa Hospital, 3The Ottawa Health Research Institute, 4University of Ottawa, Ottawa, 5Queen Elizabeth II Health Sciences Center, 6Dalhousie University, Halifax, Canada

Abstract P_52
10th International Workshop on Clinical Pharmacology of HIV Therapy
Amsterdam, The Netherlands
April 15-17, 2009

CONTACT INFORMATION
Nancy Sheehan, Quebec Antiretroviral Therapeutic Drug Monitoring Program
Montreal Chest Institute, 3650 St-Urbain, J3,07, Montréal, Quebc, H2X 2P4, Canada
© nancy.sheehan@umontreal.ca

BACKGROUND

In the elderly, clearance of omeprazole (a CYP2C19 substrate) is significantly decreased suggesting reduced CYP2C19 activity with aging; Nelfinavir (NLF) is primarily metabolized by CYP2C19 tb its active metabolite M8. M8 is then metabolized by CYP3A4;

We hypothesize that aging may increase and decrease NLF and M8 exposure, respectively, and cause a decrease in the M8/NLF metabolic ratio.

STUDY OBJECTIVE

To investigate the effects of aging on the steady-state pharmacokinetics (PK) of nelfinavir, M8 and the metabolic ratio in HIV-1-infected individuals.

METHODS

Steady-state 12 hour intensive PK study
Inclusion criteria
 Patients on nelfinavir 1250 mg BID (625 mg tablet formulation) and 2 NRTIs for more than 2 weeks
 Signed written informed consent
 ≥ 18 years of age
 Stable medical condition

Exclusion criteria
 Concomitant medications known or thought to interact with nelfinavir or M8 (2C19/3A4 inhibitors or inducers, acid-modifying agents)
 Acute illness
 Pregnant, breastfeeding or at risk of becoming pregnant during study
 Suspected non adherence

Pharmacokinetic sampling and analysis
 Standardized breakfast (617 kcal, 18g fat)
 PK sampling pre-dose and at 1, 2, 3, 4, 5, 6, 8 and 12 hours post-dose
 Analytical method: validated LC/MS/MS assay (Ottawa, Canada)
 PK parameters calculated using non compartmental methods
 Molecular weight adjusted AUC0-t, MB/AUC0-t, NLF metabolic ratio

STATISTICAL ANALYSIS

Sample size needed: 24 patients, 6 patients per age group (< 39, 40-49, 50-59, ≥ 60 years)
Linear regression between age and each PK parameter and metabolic ratio
ln-transformed PK parameters compared using T-tests for patients < 50 years and ≥ 50 years of age
S-Plus® 8.0 for Windows

RESULTS

PATIENT DEMOGRAPHICS BY AGE GROUP (n=10)

<table>
<thead>
<tr>
<th>Age group</th>
<th>< 39 (n=4)</th>
<th>40-49 (n=4)</th>
<th>50-59 (n=3)</th>
<th>≥ 60 (n=4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age ± SD</td>
<td>29.2 ± 2.1</td>
<td>45.8 ± 3.5</td>
<td>57.6 ± 3.0</td>
<td>61.8 ± 3.0</td>
</tr>
<tr>
<td>Mean weight ± SD</td>
<td>73.5 ± 7.9</td>
<td>70.3 ± 17.5</td>
<td>66.0 ± 10.3</td>
<td>64.0 ± 14.1</td>
</tr>
<tr>
<td>Mean BMI ± SD</td>
<td>25.6 ± 2.1</td>
<td>24.5 ± 3.5</td>
<td>22.4 ± 3.1</td>
<td>22.7 ± 2.9</td>
</tr>
</tbody>
</table>

Race (%)
- Black: 100%
- Caucasian: 0%
- Other: 0%

% male
- 75%

PK PARAMETERS NELFINAVIR (geometric mean)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Age group</th>
<th>AUC0-t</th>
<th>Cmax</th>
<th>Cmin</th>
<th>CL/F</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 39 (n=4)</td>
<td>39.0±2</td>
<td>5.68</td>
<td>1.06</td>
<td>32.02</td>
<td></td>
</tr>
<tr>
<td>40-49 (n=4)</td>
<td>48.73</td>
<td>6.65</td>
<td>1.57</td>
<td>25.65</td>
<td></td>
</tr>
<tr>
<td>50-59 (n=3)</td>
<td>32.53</td>
<td>4.87</td>
<td>0.95</td>
<td>38.43</td>
<td></td>
</tr>
<tr>
<td>≥ 60 (n=4)</td>
<td>69.83</td>
<td>10.10</td>
<td>3.85</td>
<td>17.90</td>
<td></td>
</tr>
</tbody>
</table>
| Sample size needed: 24 patients, 6 patients per age group (< 39, 40-49, 50-59, ≥ 60 years)

The PK parameters and metabolic ratio were not statistically associated with age;
If we remove the outlier in the 50 to 59 year age group, the AUC0-t (p=0.046) and CL/F (p=0.036) are associated with age;
The geometric means of the PK parameters for the < 50 versus the ≥ 50 age groups were not significantly different.

DISCUSSION / CONCLUSIONS

Small sample size limits the results;
Trend towards increased AUC0-t and decreased CL/F with aging, but not statistically significant;
High interpatient variability that may be explained in part by pharmacogenetics;
The present results do not support the hypothesis of decreased CYP2C19 activity with aging and subsequent increased NLF concentrations, decreased M8 concentrations and decreased M8/NLF metabolic ratio;
Recruitment is ongoing to validate these results.

ACKNOWLEDGMENTS

We sincerely thank the patients that gave their time to participate in this study. We also thank Pfizer Canada for an unrestricted research grant. Special thanks to Corinne Seng Yue for PK and statistical analysis, Linda Akagi, the research nurses (Lina Del Balso, Heather Haldane, and Isabelle Séguin) and the physicians who referred patients. This is a Canadian HIV AIDS Pharmacists Network Working Group research initiative.